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The issues of adopting the velocity components as dependent velocity variables, including 
the Cartesian and culvilinear ones, for the Navier-Stokes flow computations are investigated. 
The viewpoint advocated is that a numerical algorithm should preferably honor both the 
physical conservation law in differential form and the geometric conservation law in discrete 
form. It is demonstrated that with the curvilinear velocity vectors the curvatures of the grid 
lines introduce extra source terms into the governing equations. With the Cartesian velocity 
vector, on the other hand, the governing equations in curvilinear coordinates can retain the 
full conservation-law form and honor the physical conservation laws. The nonlinear combina- 
tions of the metric terms also cause the algorithms based on curvilinear velocity components 
to be more difficult to satisfy the geometric conservation law and, hence, more sensitive to 
grid skewness effect. For the combined utilization of the Cartesian velocity vector and the 
staggered grid arrangement, the implications of spurious pressure oscillation arising from the 
90” turning are discussed. It is demonstrated that these spurious oscillations can possibly 
appear only under a very specific circumstance, namely. the meshes in the region with 90” tur- 
ning must be parallel to the Cartesian coordinates and of uniform spacing along coordinates; 
otherwise no spurious oscillations can appear. Several flow solutions for domain with 90” and 
360’ turnings are presented to demonstrate that satisfactory results can be obtained by using 
the Cartesian velocity components and the staggered grid arrangement. ‘a 1991 Academic 

Press, Inc. 

1. INTR~DDCTI~N 

The computational algorithms utilizing a curvilinear body-fitted coordinate 
system for Navier-Stokes fluid flow in irregular geometries have been under inten- 
sive development recently. Several alternatives have been reported; some of them 
have been cited by Karki Cl], Patankar [2], and Yang et al. [S]. One important 
issue in developing appropriate algorithms is related to the choice of dependent 
variables for the velocity vector. In gross terms, one has the option of using the 
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Cartesian, contravariant, or covariant velocity components as the primary 
variables. Although comments have been made with regard to the suitability of 
each of these choices, they are mostly speculations and no studies have convincingly 
clarified this somewhat confusing issue. For example, both Karki and Yang et ai., 
referred to one particular algorithm developed in [4-6] which uses a staggered grid 
(Fig. I) arrangement similar to that for the Cartesian coordinates [7] and stores 
one Cartesian component at each control- (or finite-) volume face. There were 
several comments made by them about the algorithm that can be summarized as 
foilows: (i) This type of algorithm is valid only for configurations which do not 
deviate severely from a Cartesian geometry [l]. (ii) There are other difficulties 
such as the lack of diagonal dominance in the pressure equation unless the non- 
orthogonal terms are ignored in the course of the iterative solution [I1 ]. (iii) Dif- 
ficulties also arise when the grid lines turn 90” from the original orientations, and 
then the beneficial effects of the grid staggering are lost [I, 3, S], Similar observa- 
tions with regard to 90” turning have also been made by one of the present authors 
in [6], before the aforementioned references were pubhshed. 

However, the algorithm developed in [4-O] has not only been successfully 
applied to a wide variety of 2-D and 3-D flow configurations with substantial com- 
plexities, including diffuser [IS], cascade of turbine blade [IO], gas turbine com- 
bustor [ill, and natural convection in high pressure discharge Iamp 1121. it has 
also been extended to compute flow with a wide range of Mach numbers ranging 
from incompressible to hypersonic [13, 141. Furthermore, after the results presen- 
ted in [6] have been published flows with 90” turning have also been computed 
and very favorable theory/data comparisons obtained using very similar algorithms 
with somewhat different grid arrangements [15, 181. It appears that the concerns 
raised in [6] about the spurious pressure made may not be as well founded as one 
may imagine. Evidently, the choice of primary dependent variables for veloci:y 
vector is a complicated issue which deserves some more careful investigatlo 

CxfY)i,j 
(X,Y) 1 l+l,j 

FIG. 1. Configuration of a staggered grid system. 
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The present study attempts to address the issues of adopting the velocity com- 
ponents in curvilinear grid systems, such as the Cartesian, contravariant, or 
covariant velocity components. Both basic analyses and relevant examples will be 
used to illustrate and, hopefully to clarify, the technical difficulties associated with 
this issue. In the meantime, a related and equally important issue, namely, the 
utilization of the so-called staggered and non-staggered grid systems [4, 71, will 
also be addressed. 

2. BASIC ANALYSIS 

Before a detailed discussion is presented, it seems beneficial to give a brief 
account of the governing equations and numerical algorithm developed in [4-61 
designed to solve these equations. The equations to be solved are the steady-state 
Navier-Stokes equations along with related transport equations of the mass 
continuity, linear momentum, energy, species concentrations, and so on. Detailed 
accounts of those equations, including basic derivation procedure, can be found 
from many sources such as the books by Bird et al. [24], Kuo [25], and Rosner 
[26]. The steady-state governing equations for the mass continuity and momentum 
transport in two-dimensional Cartesian coordinates are given as an example, 

a(Pu2) + a(Puu) ap aTxx at -= --+++++ppB, 
ax 8~ ax a.~ ay 

a(Puo) + d(pu2) = 
ax aJ1 

aP ) 8% ; aT.v ; pB,, 
ay ax ay 

where p, u, v, p, T, B designate, respectively, fluid density, u-velocity component, 
r-velocity component, static pressure, shear stress, and body force. The subscripts 
associate with T and B indicate that they are elements of second-order tensor and 
vector, respectively. Since in many pratical applications the flow configurations do 
not conform to the Cartesian geometry, appropriate numerical methods must be 
devised to solve Eqs. (1) to (3) with curvilinear grid lines. 

With regard to the numerical algorithm developed in [4-61, a combined use of 
the Cartesian and controvariant velocity components has been adopted to facilitate 
the satisfaction of conservation laws that the algorithm is set out to solve in the first 
place. In more specific terms, the Cartesian velocity components are used in all of 
the momentum equations as the primary variables. In other equations, including all 
the scalar variables such as temperature and concentration, the contravariant com- 
ponents resulting from the Cartesian components are employed to evaluate the 
mass fluxes across each surface of finite volume. One key feature, reported in [5], 
is to directly employ the contravariant velocity components to yield the velocity 



VELOCITY VARIABLE AND GRID SYSTEM qj 

corrections resulting from the pressure correction equation to exactly, in discrete 
sense, satisfy the continuity equation. Afterwards, a highly efficient iterative prose- 
dure called D’Uakonov method [16] is employed to convert the information from 
the contravariant to the Cartesian velocity components. This type of hybrid 
formulation is proven to be highly efficient and does not require much of extra 
computing effords. More importantly, the very reason of devising this hybrid 
approach is to retain the Cartesian velocity components as primary variabies for 
velocity vector and to satisfy the conservation laws in an efficient manner. 

With regard to the staggered grid system employed here, as shown in Fig. 1, the 
Cartesian velocity components u and u are defined at the middie of east-west and 
north-south faces, respectively. That is, in 2-D curvilinear coordinates designated 
as t-lines and q-lines, u-components is defined at the middle of ?I-lines of the mesh, 
and v-component is defined at the middle of <-lines of the mesh. AZ1 the scaiar 
variables such as pressure, p, temperature, T, and density, p9 are located at the 
geometric center of the four vertices defining the mesh. 

First the relationship between the Cartesian (:r. cjr and contravariant (CT, lz7j 
velocity components are defined as follows:’ 

Then the continuity equation in 5- and q-coordinates can be written in the simi!ar 
form with the contravariant velocity components to that in X- and y-coordinates 
with the Cartesian velocity components (Eq. (1) )? i.e.. 

where the subscripts 5 and 9, denote the partial derivatives along the curvihnear 
coordinate lines. With regard to the covariant velocity components, defined as @ 
and p here, i.e., 

the continuity equation written in the covariant velocity components are 

(pee, ui pp1 Q< + (per, D+ pfl2 F), = 0, 

where 

2 
911422 

El=- 
J 
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2 
411 q22 

cI2=- 
J 

q,1= (x; +y:p2 

qz2 = (xf, +y;p 

J = x<y,, - x,,y< ; 

es and e, are unit vectors along <- and q-directions, respectively, i.e., 

et = 
xeex +yre, 

411 

e,, = 
xv e, + yq e, 

q22 . 

(loa) 

(lob) 

The relevant issues of formulating the pressure correction equation have been dis- 
cussed in some details by Karki Cl] and will not be repeated here. One of the key 
features is that the coordinate transformation associated with the use of both the 
Cartesian and contravariant velocity components may introduce the off-diagonal 
contributions into the pressure correction equation. For 2D case, the pressure 
correction equation may be of a nine-point structure instead of a five-point struc- 
ture, as pointed out by Shyy et al. [4]. However, it should be pointed out that it 
is not clear how much extra effort will be needed to handle this extra complexities. 
For instance, Shyy et al. [4] have found that it is very acceptable to simply keep 
the five-point contributions and to ignore all other off-diagonal terms in the 
iterative solution procedure. This approach does not affect the final solution but has 
caused concern regarding the numerical convergence rate, especially under the 
influence of skewed meshes. The wide variety of applications documented in [8-161 
convincingly demonstrate that this procedure is very robust in a wide spectrum of 
grid skewness. Moreover, one can also resort to a more complicated equation 
solver than the conventional line-SOR method by retaining all nine-point structure. 
The relative merits of these approaches may well be problem dependent and they 
are relevant only to computational efficiency, not computational accuracy. As to 
the use of covariant velocity components, the extra source generated in the momen- 
tum and other transport equations may require explicit treatments. Hence the over- 
all computational efficiency of the whole system of equations is not easy to estimate. 
This issue will not be further pursued in the present work. What will be the focal 
point here is the issues related to the computational accuracy. 

I. Physical and Geometric Conseroation Laws 
When considering the various possible choices of velocity variables, one of the 

primary criteria is that in the framework of finite-volume formulation, a fully 
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conservative-law form of governing equations is usually more desirable since it can 
satisfy the physical laws more easily and accurately. This consideration has a 
particularly important implication on the convection terms of the momentum 
equations since they are nonlinear and are usually the source of numerical difficulty. 
One exampie has been given by Chu [23]. With the Cartesian coordinates, the con- 
vection terms in Eq. (2) are of the form of (puu), + (puu )Y, which is fully conser- 
vative. In a curvilinear coordinate system, these terms can be transformed in a 
straightforward manner with the use of the Cartesian velocity components as the 
primary dependent variables to the form of (~UZI): + (pVti)? which is also fully con- 
servative. However, when either the contravariant or the covariant velocity com- 
ponents are used as the primary dependent variables, the fully conservative form 
can no longer be guaranteed since the linear momentum is conserved along a 
straight line, not a curved line. Thus the differential equations for both the con- 
travariant and the covariant velocity components involve the source terms arising 
from the curvature of the coordinate lines. Furthermore, in the numerical 
implementation, the contravariant components pU and p V on each boundary of the 
mesh are dehned as the mass flux between the two end points of the boundary CA] 
and their values can artificially change with the mesh spacings. Hence, for the same 
Rowfield the values of those contravariant and covariant velocity components car: 
be greatly affected by the ways that the grid systems are generated. These aspects 
can cause difficulties in preserving high degrees of numerical accuracy in satisfying 
the conservation laws. 

TO demonstrate this point, consider the purely convective equation 

One of the most basic tests of the numerical accuracy of any computational algo- 
rithm can be made by generating a grid system with arbitrary skewness and non-. 
uniformity and then to use this grid system to check the numericaf accuracy of it 
by solving a uniform flow held of, say, p = 1, M = 1, and u = 1. With this condition, 
Eq. (11) is trivially satisfied in a differential sense. Hence it serves as a good case 
to test whether an algorithm can honor the geometric aspect of the conservation 
laws in discrete form. Here we call this requirement the geometric conservation law 
1271 since the governing equations retain the conservation law form but contain 
only the geometric quantities. The transformed equation of Eq. (1 li ) with the 
Cartesian velocity components as dependent variables in curvilinear coordinates 
then becomes 

which with the uniform flowfield is reduced to 

(13) 
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Referring to Fig. 1, Eq. (13) is discretized as 

(4’,, -xv), - (.I>, - XI1),” + (-4’< + x& - (-ye + x,), = 0, (14) 

where e, W, ~1, and s denote the east-, west-, north, and south-face of the mesh, 
respectively. If a consistent finite-volume formulation is adopted, as shown in [4], 
by approximating the derivative of the metrics terms in Eq. (14) with the difference 
between two end points of the mesh line, then Eq. (14) becomes 

[(Vi+ I,j+ 1 -4’i+ I,i) - (Xi, 1,j+ 1 -xi+ I,Jl 
- II(J’~,,~+ 1 -L’i,i) - (Xj.i+ I --vi,i)I 
+ C-(?‘i+~,~+~-J’j,i+~)+(Xi+~.~+~-X,,~+~)l 

- [I-(Yi+I,j-Yi,j)+ (si+I,j-xi,jjl =O (15) 

which is satisfied exactly, regardless of how skew or nonuniform the meshes are. It 
is also noted that one of the merits of this test problem is that since the flowfield 
is uniform, the whole focal point is directed toward the satisfaction of geometric 
requirements; other issues such as the appropriate approximation of the convection 
effects do not arise here. 

Since our primary interest is for Navier-Stokes flow computation, it is useful to 
point out that the above geometric conservation law is applicable to the pressure 
gradient terms as well. However, the same requirements cannot be rigorously 
satisfied by the viscous terms due to the appearance of the nonlinear metric 
products associated with the coordinate transformation of the second-order 
derivative terms. The detailed information related to viscous term treatment can be 
found in [4] and will not be repeated for the interest of saving space. (It is, 
however, a good opportunity here to point out that in [4] there is a typographical 
error in Eq. (lob), where the sign in front of c” should be negative instead of being 
positive.) Overall, one can summarize the situation by stating that with the use of 
Cartesian velocity components, the Navier-Stokes equations can be written in the 
strong conservation law form in the curvilinear coordinate system. In terms of 
numerically satisfying the geometric conservation law, the first-order derivatives, 
including the convection and pressure terms, can always achieve it. The degree of 
satisfaction of the viscous terms, on the other hand, is dependent upon the actual 
grid distribution. 

For the use of curvilinear components, say, the contravariant vector, the equa- 
tion corresponding to Eq. (11) can be obtained by performing a chain- rule type of 
coordinate transformation, 
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where qIL and q22 are defined previously, and the Christoffel symbois of the second 
kind are defined as 

It is now obvious that Eq. (16) not only possesses more terms than Eq. i::Li L btit 
more critically it contains source terms resulting from the curvature of the coor- 
dinate line. Hence, it is no longer of the fully conservative form which can cause di:‘- 
ficulties with the finite-volume formulation, especially if the grid system contains 
substantial nonuniformity and skewness. The fact that qL1 and qZ2 are nonlinear 
with respect to the metrics terms resulting from the coordinate transformation 
further compounds the difficulty of exactly satisfying the conservation law in a. dis- 
crete manner. A similar case can be made to the equation cast in terms of covariant 
velocity components. 

It should be emphasized that in the context of using curvilinear vehiFy corn- 
ponents. there are many possible ways to manipulate the governing equations and 
Eq. ( 16) is not the only form that has been adopted in numerical computations. For 
instance, a very interesting way of utilizing the covariant velocity componenrs as 
the primary dependent variable which avoids complicated tensor manipulation is 
given by Karki [I]. In [ 11, the discretized equations for the covariant velocity 
components are obtained by an algebraic manipulation of the corresponding equa.- 
tions for the Cartesian velocity components which avoids any reference to the dir’- 
ferential form of the conservation equation for the curvilinear velocity components. 
The momentum equations adopted in Cl] are derived based on a local coordinate 
system in which all the velocity appearing in any given discrete equation follows the 
direction of the velocity vector at the center point of each control volume. 
ing this way, the spirit of linear momentum conservation is retained in each equa- 
tion and thus the source terms from the curvature effects are not invoived. Hence 
the appearance of the conservation law form is formally preserved. However, in 
order to be able to actually solve the discretized equations, more manipulations are 
needed (as shown in Eqs. (3)-(74) of [l] ), since each linear discretized equation 
now contains more than one family of velocity components In the final form, 
curvature terms reemerge, albeit in a different formulation procedure. 

The other observation related to satisfaction of the geometric conservation la& 
can be made by studying the continuity equation written in terms of the covarianr 
velocity components. Equation (9) demonstrates that the conservation fair; can be 
preserved in differential form for the covariant velocity components. However, 
because the terms u and fi involve nonlinear combinations of metrics terms, the 
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geometric conservation law cannot be always honored in a skewed mesh system, It 
is clear that, since the physical conservation laws are the ones that we ultimately 
strive to satisfy, the numerical algorithms not only preferably should be written in 
strong conservation law in differential form, but also should satisfy the geometric 
conservation law in discrete manners. The latter requirement cannot be satisfied as 
long as the equations contain nonlinear metric terms, regardless of whether the fully 
conservation law form is adopted in the differential equations or not. 

II. Orientation Dependency 

Besides the satisfaction of conservation laws, another issue relevant to the choice 
of velocity variables is the dependency of numerical accuracy of the orientation of 
grid lines. In this regard, since the Cartesian velocity components are always 
referred to a fixed orientatin throughout the whole domain and, on the other hand, 
both the covariant and contravariant velocity components are defined in terms of 
the local coordinates and hence do not possess any preferred direction, it appears 
that the employment of the latter as dependent variables is more satisfactory. More 
importantly, as suggested in [l, 3, 8, 91, with the combined use of the Cartesian 
velocity components and the staggered grid arrangement, difficulties arise when the 
grid lines turn 90” from the original orientations, and then the beneficial effects of 
the grid staggering are lost. These are legitimate and important points that deserve 
some more investigation. 

First, it should be pointed out that while the employment of the Cartesian 
velocity components yields results that are coordinate orientation dependent, they 
nevertheless all possess the same order of accuracy in the sense of Taylor series 
expansion and mesh size. Hence the important requirement that the results can be 
improved at the same rate as the meshes are relined is met. As to the issue of 90” 
turning, Fig. 2 is used to illustrate the point. It is seen that the original charac- 
teristics of the staggered grid arrangement can be largely lost with a 90” turning 
where the u-velocity is located where, nominally, u-velocity is located, and vice 
versa. However, does this mean that the pressure gradients which drive these 
velocities will be errorously evaluated? The answer is “not necessarily.” It is noted 
that the pressure gradient term along the x-direction is of the form of ijpldx. After 
the transformation from x - 2’ coordinates to the curvilinear 5 - rl coordinates, the 
same pressure gradient term driving the u-velocity now appears as y,p: - yrp,,. 
With a complete 90” turning and the fact that the t-lines are parallel to the y-lines, 
y,! is zero and the only contribution of the pressure gradient term for u-velocity 
comes from the y?p,, term. Here ye is the projected length of mesh boundary on 
which the pressure force is exerted. An identical argument can be made for the 
u-momentum equation whose pressure gradient terms appear in the form of 
.XgPq - XqPr. 

As indicated in Fig. 2(b), the pv term with 90” turning can be approximated by 
a six-point averaging/differencing procedure. That is, for the finite-volume cell of 
the variable ui+ i:+ + , , pq can be approximated by the difference of the weighted 
four-point averagmg of (pi+ i,i+ i, pi+ l,i, pi.j, P~,~+, ,) and the weighted four-point 
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FIG. 2. Effect of control volume orientation on the effectiveness of the grid staggering: \a ) e?Tective 
grid staggering (< = x, ‘1 =J’); (b) ineffective grid staggering (5 = y. ~1 = I j. 

averaging Qf (Pi+~,j~ Yip Pi+l,.,- I, Pi.,- 1 ,). Hence if the metric term y: is of 
constant value in the grid system then the resulting approximation of JJ?, foor 
the variable of u;+ I,i+I will be the difference between (p;, 1. i+ 1 +JI~,~+ I) and 
(pi+ 1,j- 1 +pi,+ I j, which means that a “chequerboard” type of spurious pressure 
oscillations CT, 181 may be acceptable as numerical solutions. For example, with a 
uniform pressure field, i.e., zero pressure gradient, any alternating values of pressure 
field that gives zero pressure gradient based on the aforementioned four-pain; 
approximation scheme will be satisfactory as far as the momentum equations are 
concerned. 

One would then like to know under what circumstances this spurious mode of 
pressure oscillation will not appear. It is noted that with the combined use of the 
staggered grids and the aforementioned interpolation scheme for pressure gradients, 
even with constant J;, the chequerboard pressure oscillations cannot appear as 
long as yr7 is not identical to zero in the region of 90’ turning. Simi!ar observation 
can be made for the v-momentum equation. That is, if either .x: is not identical to 
zero or .Y~ is not a constant in the region of 90’ turning, the staggered grid arrange- 
ment can prevent the chequerboard oscillations from appearing. With these pcicts 
in mind, we conclude that the chequerboard pressure oscillations can appear 
possibly only when the meshes in the region of 90’ turning are both of the 
Cartesian geometry and of uniform spacing along all coordinates, This conclusion 
can be supported by considering the three possibilities that J: is a consrant: 
(i) Cartesian grids, (ii) non-Cartesian but V-Lines are parallel to .x-!ines, and 
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(iii) non-Cartesian but 
are illustrated in Fig. 3. 

q-lines are parallel to each other. These three possibilities 

In (i), both ys and xg are zero. However, unless the meshes are of uniform 
spacings along both l- and q-directions, y: and x, are not both of constant values, 
hence a weighted interpolation scheme for pressure gradients effetively rules out the 
possibility of chequerboard pressure oscillations. In both (ii) and (iii), where the 
meshes are not Cartesian, the 90” turning of the solid boundaries assures that the 
chequerboard oscillations cannot appear since in both cases it is impossible for yV 

(i) Cartesian mesh 

Y 

‘i. X 

(ii) q-lines parallel to x-lines 

(iii) all q-lines parallel to each other 

FIG. 3. Three circumstances under which yE is a constant. 
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and X: to be identical to zero as well as for J’~ and .t’,? to be constant values. Tn sum- 
mary, the problem of 90’ turning associated~ with the use of the Cartesian velocity 
components and the staggered grid arrangement appears far less severe. It is shown 
that the spurious pressure oscillations can possibly appear only under the specihc 
condition that the meshes are parallel to the Cartesian coordinates and uniform 
along all coordinate lines. This is a rather stringent restriction, since the non- 
uniform meshes are almost invariably found in complex flow computations x 
resolve the varying length scales and flow structures. ence the staggered grid 
arrangement is still of great value in the present algorithm, especiaily for boundary 
tieatments. 

It is useful at this point to draw some more comparisons between the staggered 
and nonstaggered grid systems. First, as long as the metric terms xc, x,, j’<, and 
d:‘li are all non-constants, both the staggered and nonstaggered grid systems are free 
from producing spurious pressure oscillations Hence the above discussion can be 
viewed as applicable to the nonstaggered grid system also. However. if these metric 
terms are constant, then an alternative discretizatimn procedure is needed to 
appropriately handle the pressure terms in the nonstaggered grid sywem. Kn 
staggered grid system, on the other hand, the potential problems of producing the 
spurious pressure oscillations are fundamentally caused bj :he displaced grid 
arrangment. An easy cure can be made by simply turning the flow geometry relative 
to the Cartesian coordinates so that the above undesirable phenomenon does not 
occur in the first place. Referring to Fig. 2, as long as c-lines in the inlet region are 
not parallel to .x-lines, the spurious pressure osciliations will not occur. 1: is 
emphasized that since the orientation of the Bow geometry can be defined 
arbitrarily with respect to any coordinate system, there is no reason to always iris&: 
on defining the c-lines in the inlet region to be parallel to >:-lines. For the example 
shown in Fig. 2, one can simply define the x-coordinate to be, say, of 45’ mstead 
of parallel, to the inlet of the channel; the difficulty of velocity decoupling wi:k then 
disappear regardless of the grid distributions. 

In summary, in any orientation, if the metric terms between (.u, J.) and i 5. ~7 i 
coordinates are nonconstant, then the spurious pressure oscillations do not appear 
In both the staggered and nonstaggered grid. For the staggered grids, moreover, the 
problem of spurious pressure oscillation can be prevented even with the co~rant 
metrics terms. One can simply define the curvilinear coordinates to be non-paraiiei 
to the Cartesian coordinates. 

Besides the algorithms utilizing the staggered grid arrangement, a few methccs 
based on the nonstaggered grid arrangement have also been proposed [i9.2G]~ 
These methods require special procedures to prevent the decoupling of the velocity 
and pressure fields from exhibiting the chequerboard oscillations. For example. in 
[ 19 ] an. explicit fourth-order pressure dissipation term added to the pressaTe 
correction equation to suppress the spurious oscillations. owever, with the use of 
finite mesh sizes, in reality the artificially added fourth-order gradient term may not 
be smaller than the original second-order gradient term, especially when there are 
!arge pressure gradients present in the flowfield, as demonstrated by a Fourier type 
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of analysis 11211. Hence the actual degrees of numerical accuracy may be affected 
by the numerical smoothing procedure. Furthermore, it is also well known ~221 
that artificially generated boundary conditions are needed for the pressure in a non- 
staggered grid system. With the use of the staggered grid system, there is no need 
to devise artificial boundary conditions for the pressure correction equation [4] 
regardless the orientation of the coordinate system. In terms of the momentum 
equations, since in general both Ps and P, terms appear in both u- and 
v-momentum equations, some extrapolation procedures will still be needed. 

3. Pratical Flow Exatnpks 

TO demonstrate the pratical implications of the present algorithm, several exam- 
ples of direct relevance with the aforementioned issues will be presented. Results of 
flows in domains with 90” and 360” turnings are shown here. These flow conligura- 
tions are found in the hydraulic turbine system, as schematically shown in Fig. 4. 
For the flow through the casing, which directs the water circumferentially into the 
turbine and runner, a 360” turning of the domain is encountered. Downstream of 
the runner, a draft tube typically of 90” turning is used to recover the static pressure 
from the kinetic energy. Both the casing and the draft tube pose direct tests of the 
issues related to the 90” degree turning of the present algorithm. All the results 
shown in the following have been obtained by using the Cartesian velocity com- 
ponents and the staggered grid system. No artificial smoothing or interpolation 
procedures were needed to yield the solutions. 

A. 30 Casing 

The schematic representations of the casing, including the overall geometry, the 
evolution of the size of cross section, and representative grid distributions are sum- 
marized in Fig. 5. The water enters from the upstream inlet and exists through the 
inner circumferential surface. The grid system is of the size of 95 x 21 x 13 nodes. 

FIG. 4. Schematic of hydraulic turbine system. 
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top view 

I 

cross-section 

Selection grid distribution in cross-sectional planes 

FIG. 5. Geometry and grid system of casing. 

Figure 6 shows a top-view of a casing with smooth and continuous turning. 
Figure 7 shows the computed particle trajectories in short time durations and static 
pressure distributions in the middle top-view plane for a iaminar flo-w. For the 
present problem, a key dimenionless parameter characterizing the flow behaviour is 
the Reynoids number, Re, defined as 

Re = uL!\ 

where CL t. and $1 are the characteristic values of velocity, length, and kinsmaric 
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FIG. 6. Grid system in top-view plane of a casing with smoothly varying wall contours. 

viscosity of the flow, respectively. The Reynolds number based on the fluid 
kinematic viscosity, the incoming uniform velocity and the inlet diameter of the pre- 
sent case is 100. It can be seen that, throughout the whole flow domain, no spurious 
oscillations are present in the numerical solution. With the given Reynolds number, 
the flow in the casing shows combined characteristics of that through a pipe (in the 
outer portion of the casing) and that into a sink (in the inner portion of the casing). 

Is is worth pointing out that, in general, the conventional averaging process may 
not be a good practice because there are circumstances that the actual flow device 
may produce physical oscillations. The casing is such an example. Due to the struc- 
ture and manufacturing consideration for its large size, it is common to divide the 
circular boundary into a series of interconnecting straight segments. Figure 8 shows 
a casing with geometry similar to that in Fig. 6, but the whole 360” of continuous 
and smooth turning is now replaced by 20 straight segments, each one spanned 
over 18”. The computed particle trajectories and static pressure distributions for the 
same inlet condition and Reynolds number in the present geometry are shown in 
Fig. 9. The slope discontinuity between the two consecutive segments causes the 
pressure distribution to have less uniform gradient in the outer domain compared 
to Fig. 7. Calculations have also been conducted for turbulent flows, with R, = 106, 
closed by the standard k-E two-equation model. For flows in the casing shown in 
Figs. 6 and 8, the solutions are shown in Fig. 10. For high Reynolds number flow, 
there is less influence of the mean pressure gradient along the circumferential direc- 
tion than along the radial direction. Moreover, for the geometry of interconnecting 
straight segments (Fig. 8), the discontinuity of the boundary slope produces isolated 
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7. Solution oflaminar flow (Re= 1OO)in a casing with smoothly varying wall conicurs. 
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FIG. 8. Grid system in top-view plane of a casing with wall contours with 20 segmented straight lines 
encompassing 360”. 

islands in the outer domain. These islands are not present in the flow through the 
smoothly turning geometry of Fig. 6. One implication here is that a conventional 
averaging procedure may eliminate these pressure oscillations caused by the aburpt 
turning of the casing wall which are inherent to the given design. 

Figure 11 illustrates the evolution of the secondary velocity field of the turbulent 
flow on two selective cross sections, i.e., planes No. 45 and No. 60 (as indicated in 
Fig, 8). The combinations of centripetal force, no-slip condition along the solid 
walls, and the exit opening in the inner circumference cause the secondary flow to 
exhibit strong velocity in the top and bottom wall regions along with double swirls 
in the core region. The swirls in the core region are not only of much weaker 
strengths but also of gradually reduced sized toward downstream. 

B. Draft Tube 

The draft tube is a curved diffuser located beneath the turbine that delivers the 
exhaust flow from the turbine to the tailwater basin. The role of the draft tube is 
to reduce the velocity of the water existing from the turbine, thereby converting the 
excess kinetic energy of the exhaust water into a rise in static pressure. As shown 
in Fig. 12, a typical draft tube is characterized by a 90” turning as well as substan- 
tial increase of cross-sectional area from the inlet to the outlet. This flow configura- 
tion has been studied by the present algorithm as reported in [6, 151. It should be 
pointed out that in [6], some cellular structures of the static pressure contours 
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particle trajectories 

static pressure contours 

FIG. 9. Solution of laminar flow (Re = 100) in a casing with segmented straight-line contocrs. Note 
the effect of wall slope discontinuities on pressure distribution. 
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particle trajectories 

static pressure contours 

FIG. 10a. Solution of turbulent flow (Re = 106) in a casing with smoothly varying wall contours. 

were observed downstream of the turning section. The reason for deserving these 
structures was not clear at the time of publication. Later on, it was found that these 
cellular structures were mainly caused by, again, the numerical definition of the 
flow configuration. In [6], the draft tube was first geometrically defined by some 
limited number of points along the through flow direction, and the geometry 
between any two points was defined by straight line interpolation. This practice was 



particle trajectories 

static pressure contours 

FIG. lob. Solution of turbulent flow (Re = 106) in a casing with segmented straight-line conxxxs. 
Note the efkct of wa!! slope discontinuities on pressure distribution. 

superseded later by a cubic spline interpolation and those cellular structures essen- 
tially disappear as a result of this improved geometry definition, as shown in Fig. 12 
for a typical result of the flowfield computed in a grid system of 61 x 19 x 15 nodes. 
Hence the apparent oscillations of the pressure field reported in [6] are caused no: 
by the numerical algorithm but rather by the nonsmoothness of the discrerized 
geometry used for computations. 
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FIG. 11. Velocity pattern in two cross-sectional planes of turbulent flow (Re = 106) in a casing with 
segmented straight-line contours. 
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geometry and selected particle trajectories 

velocity vectors in middle side-view plane 

static pressure contours in middle side-view plane 

FIG. 12. Geometry and solution of turbulent flow (Re =106) in a draft tube wi?h 90" turning. 

4. SUMMARY AND CONCW~ION 

The present work aims at investigating the issues of adopting the velocity 
variables and grid systems for computing the complex fluid flow in irregular 
geometries where the employment of a non-orthogonal curviIinear coordinate 
system is necessary. The following are some conclusions reached by the study. 
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(i) The strong conservation law in differential forms can be completely 
retained by the use of Cartesian velocity components. The use of the covariant 
or contravariant velocity components generally introduces source terms into the 
differential governing equations due to the curvature effects. 

(ii) In the framework of the finite-volume approach, the momentum equa- 
tions based on the Cartesian velocity components can satisfy the geometric conser- 
vation law in both convection and pressure terms. The second derivative (viscous) 
terms involve nonlinear metric terms and hence do not guarantee the satisfaction 
of the geometric conservation law. For the equations based on the curvilinear 
velocity components, the nonlinear metric terms appear both in the first and second 
derivative terms. Coupled with the curvature source terms, the utilization of the 
curvilinear velocity components as the primary variables makes the degree of 
satisfaction in terms of honoring the geometric conservation law more influenced by 
the grid skewness. 

(iii) A unique issue facing the use of the Cartesian velocity components is 
that of 90” turning. It is demonstrated here that by combining with the staggered 
grid arrangement, the Cartesian velocity components can still perform satisfactorily 
even with the exact 90” turning. This can be achieved by defining the curvilinear 
coordinates (and hence the orientation of the flow domain) to be non-parallel to 
the Cartesian coordinates, or by utilizing the meshes of nonuniform spacings. In 
practice, satisfactory results have been obtained with the use of the Cartesian 
velocity components and the staggered grid system without introducing extra 
smoothing procedures, in all mesh shapes, as demonstrated in the examples given 
here and in the previous publications cited in the references. 

(iv) In the context of curvilinear coordinates and with proper orientation or 
grid arrangement, the staggered grid can eliminate the need of devising any artificial 
smoothing terms to suppress the spurious oscillations. It can also naturally satisfy 
the pressure equation without introducing artificial boundary conditions. 
Nevertheless, it should be pointed out that the extrapolation procedure may still be 
needed for the pressure terms in the momentum equations. 

(v) As a related issue, it is pointed out that the conventional manner of 
averaging the static pressure field may not be a good practice since there are 
engineering designs which inherently produce oscillations due to variations of wall 
contours. 

It should be clear that as a result of the above discussions, there is no choice or 
algorithm that is perfect in all aspects. The present paper does not attempt to 
promote this. What has been attempted here is to clarify some of the confusing 
points found in the literature by both logical discussion and pragmatic demonstration 
and to point out the potential strength and weakness of each of the methods under 
consideration. 
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